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ABSTRACT 
 

The oxyhemoglobin dissociation curve is a vital tool for comprehending how blood transports and 
releases oxygen, that is carried throughout the body both in bound form with protein (hemoglobin) 
and dissolved in plasma. The oxyhemoglobin dissociation curve describes the relationship of 
oxygen saturation (SaO2) and partial pressure of oxygen in the blood (PaO2) (Patel & Jose 2024). 

The oxygen dissociation is affected by factors like pH, CO2, 2,3-DPG, CO. This paper discusses 
the significance of factors like pH, CO2, 2,3-DPG, CO, and structurally different haemoglobin which 
have a considerable effect on the affinity of haemoglobin for oxygen and determine how efficiently 
oxygen is supplied to the body cells. 
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1. INTRODUCTION 
 
Oxygen saturation is essential for medical care 
and is closely regulated within the body 
(Abraham et al. 2023). Most oxygen (98%) 
transported within the body is attached to the 
hemoglobin, whereas a small fraction (2%) is in 
dissolved form in the blood (Boening et al. 2021, 
Rengasamy et al. 2021, Balcerek et al. 2020). At 
atmospheric pressure, oxygen in dissolved form 
is only 3ml per liter per Henry's law, whereas 
approximately 197 ml of O2 per liter is 
transported in protein-bound form. That means 
the dissolved fraction contributes a minor portion 
to the total amount of oxygen carried in the 
bloodstream (Kaufman et al. 2024, Hess 1987, 
Sun et al. 2021, Ishihara et al. 2014). 
 

Concerning oxygen transport in the bloodstream, 
we need to understand two terms, (i) Oxygen 
saturation (SaO2) means the percentage of 
hemoglobin bound to Oxygen and Partial 
pressure of oxygen in the blood (PaO2) and this 
determines the amount of Oxygen dissolved in 
blood. 
 
The oxygen dissociation curve is important for 
understanding oxygen delivery to tissues under 
various physiological conditions. Body adaptation 
to different environments is reflected by the 
changes in the curve. The manuscript highlights 
the significance of factors like pH, CO2, 2, 3-

DPG, CO and structurally different haemoglobin 
which have a considerable effect on the affinity of 
haemoglobin for oxygen and determine how 
efficiently oxygen is supplied to the body cells. 
 

2. FINDINGS 
 
Hemoglobin has two parts namely a protein part 
(Globin) and a non-protein part (haem). This 
haem is composed of 4 subunits (2 alpha and 2 
beta) bound to an iron atom which is in ferrous 
form (Fe++). This hemoglobin tetramer binds to 4 
Oxygen molecules (Thom et al. 2013).  

 
In general, the Oxygen dissociation curve is a 
sigmoid curve. The curve is obtained by plotting 
oxygen tension on the X-axis and hemoglobin 
saturation on the Y-axis. It gives a visual 
impression of how oxygen binds to hemoglobin. 
 
Many physiologic factors can shift the oxygen 
dissociation curve either to the right or the left. 
Shift to the right causes hemoglobin to have a 
lesser affinity for oxygen and causes easier 
unloading of oxygen from hemoglobin. The shift 
to the left increases the affinity of hemoglobin for 
oxygen and causes hemoglobin to take up and 
retain oxygen more readily. An increase in 
carbon dioxide, increase in hydrogen ion (i.e. 
decreased pH or acidity), increase in 2,3-DPG, 
and an increase in temperature shifts the curve 
rightwards.  

 

 
 

Fig. 1. Hemoglobin dissociation curve: The dotted line corresponds with the shift to the right 
caused by Bohr effect. The figure was created by the author using MS Excel
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Hemoglobin exists in two states, the T state 
(tense, low affinity, deoxygenated) and the R 
state (relaxed, high affinity, oxygenated). These 
two states differ in their oxygen-binding affinity. 
In the unbound form, hemoglobin subunits exist 
in the T state. In lung alveoli, where there is a 
higher partial pressure of oxygen (pO2), a 
hemoglobin subunit in the T state binds oxygen 
causing a conformational change in the other 
hemoglobin subunits, changing them to high-
affinity R state. This causes oxygen binding to 
occur with ease. This process, in which one 
hemoglobin subunit helps others to gain more 
affinity for oxygen is termed as positive 
cooperativity (Cambronero 2001, Mihailescu & 
Russu 2001). 

 

3. PARAMETERS AFFECTING OXYGEN 
DISSOCIATION CURVE 

 

3.1 pH 
 
With the increase of hydrogen ions acidity 
increases (or pH decrease). So, a decrease in 
pH (acidity) shifts the dissociation curve 
rightwards. The opposite is also true. An 
increase in pH (alkalinity) shifts the dissociation 
curve to the left (Sharan & Popel 1989). 

 

3.2 Carbon Dioxide 
 
The effect of carbon dioxide and H+ ions on the 
oxygen dissociation curve is quite closely related. 
Carbon dioxide is mostly transported in the blood 
bloodstream in the bicarbonate buffer system, 
with a small portion being transported in 
carbaminohemoglobin form. Carbon dioxide on 
entering the red blood cells quickly converts to 
carbonic acid with the help of the enzyme 
carbonic anhydrase. This acid immediately 
dissociates into bicarbonate and hydrogen ion 
(H+ ion). The increase in hydrogen ion shifts the 
dissociation curve to the right by stabilizing the 
hemoglobin in the T-state, weakening its binding 
capacity, and increasing the likelihood of 
dissociation thus promoting the oxygen 
unloading. Hemoglobin's lower affinity for oxygen 
secondary to increases in the partial pressure of 
carbon dioxide is called the Bohr effect (Malte & 
Lykkeboe 2018, Benner et al. 2023, Malte et al. 
2021).  

 

3.3 2, 3-Diphosphoglycerate (DPG) 
 
At high altitudes where the oxygen level is low, 
hyperventilation occurs causing CO2 washout, 

less pCO2, and less hydrogen ion concentration 
leading to leftward shifting of oxygen-hemoglobin 
dissociation curve. As a counter mechanism, the 
red blood cells produce more 2, 3-DPG which 
leads to the shifting of the curve to its normal 
position i.e. rightwards and establish a 
respiratory compensation state. That means 
under the stress of chronic hypoxic conditions at 
high altitudes, more 2,3-DPG is produced, which 
shifts the oxy-hemoglobin dissociation curve to 
the right in favor of oxygen unloading. The 
relationship of hydrogen ions is inversely 
proportionate with levels of 2, 3 DPG (Sohmer & 
Dawson 1979, Scott et al. 2016, Mairbäurl et al. 
1986). 

 

3.4 Temperature 
 

Oxygen unloading is favored with a rightward 
shift of the curve as the temperature increases. 
Exercise is an example. Muscular temperature 
increases with increased exercise, shifting the 
curve to the right, and creating an environment 
where more and more oxygen is available for 
utilization as per the tissue demand (Woyke et al. 
2022). 

 

3.5 Carbon Monoxide 
 

Carbon monoxide has 240 times more affinity for 
hemoglobin than oxygen. Therefore, during 
carbon monoxide poisoning, CO attaches tightly 
with hemoglobin (carboxyhemoglobin), causing 
structural changes in the other oxygen binding 
sites of hemoglobin to relax (R) stage, and 
causing more affinity for oxygen and a leftward 
shift of curve. Therefore, the unloading of oxygen 
in the peripheral tissue is hampered. Despite 
maintaining normal paO2, the person faces a 
state of tissue hypoxia. As the pulse oximeter is 
unable to differentiate carboxyhemoglobin from 
oxyhemoglobin, the person seems to be normal 
as per the reading of this machine (Patel & Jose 
2024). 

 

3.6 Fetal Hemoglobin 
 

Fetal hemoglobin (HbF) is composed of 2 alpha 
and 2 gamma chain proteins in contrast to the 
adult hemoglobin (HbA) which is made up of 2 
alpha and 2 beta chain. Due to this structural 
difference, fetal hemoglobin has a higher affinity 
for oxygen. The partial pressure at which HbF is 
half saturated with oxygen (P50) is 19 mm Hg, 
compared to 27 mm Hg for HbA. This helps the 
easier extraction of oxygen from maternal 
circulation for the fetus (Kaufman et al. 2024). 
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4. CONCLUSION 
 
The oxyhemoglobin dissociation curve is a vital 
tool for comprehending how blood transports and 
releases oxygen. Detail knowledge of various 
factors involved in the right and the left shift of 
the oxygen-hemoglobin dissociation curve is 
essential for understanding the different 
physiological processes that occur at the tissue 
level and the level of the alveoli. 
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